Wireless Structural Health Monitoring and the Civil Infrastructure Systems: Current State and Future Applications

Anne Kiremidjian
Professor
Department of Civil and Environmental Engineering
Stanford University
Stanford, California

MEMSCON
October 7, 2010
Bucharest, Rumania
Objectives

- Present the current state of wireless structural health monitoring
- Outline challenges
- Present future directions
Outline

- Motivation
- Wireless Monitoring System Design
- Example application
- Current barriers
- Conclusion
- Future Directions
Outline

- Motivation
- Wireless Monitoring System Design
- Example application
- Current barriers = future opportunities
- Conclusion
Motivation - Why wireless?

- Advances in electronics –
 - sensors,
 - wireless radios – range, bandwidth, reliability
 - power harvesting to extend life
- Low-Cost solution
 - No wires
 - No installation of wires
 - Cheaper sensors
 - Small form factor
- Flexible network architecture – reconfigurable system
- Flexible computational platform – options for computing
 - Local – sensor level – embedded and updatable
 - Centralized
Outline

- Motivation
- Wireless Monitoring System Design
 - Overall System Design
 - Hardware Features
 - Software Features
- Example application
- Current barriers = future opportunities
- Conclusion
Wireless Structural System Components

Control Center
- Manager on site
- Data storage
- Data management and archiving

Decision Support & Emergency Response System

Data Analysis and Post-processing System
- Synchronization
- Signal Processing
- Spectral Analysis
- Feature Extraction & Damage Classification
- Decision making

Data Storage

Sensors & Network

Manager on site

Control Center

Synchronization

Signal Processing

Spectral Analysis

Feature Extraction & Damage Classification

Decision Making

Data Storage
Sensing Unit Design
Sensing Unit Design

Multiple sensors
- Acceleration –
 - Strong motion – 3D
 - Ambient vibrations -3D
- Strain
- Temperature
- Humidity
- ...
Sensing Unit Design - Chronology

- Five Generations of Sensing Unit Design
 - 1996 – Straser, Kiremidjian and Meng
 - Single 2D accelerometer, wireless modem, single supervisory microprocessor
 - proof of concept with field test of 5 units
 - 2000 – Lynch, Law and Kiremidjian
 - Single 2D accelerometer, wireless modem, dual microprocessor, smaller form, lower power consumption
 - Verification with laboratory test followed by subsequent field tests
 - 2002 – Mastroleon and Kiremidjian – multiple sensors
 - 2006 – Wang and Law – multiple sensors, increased wireless transmission range, data streaming with embedded compression algorithms
 - 2007 – current unit
Sensing Unit Design

- **Features of 5th Generation Design**
 - **Sensors**
 - Dual accelerometer – 24 bit A/D converter
 - 3D strong motion – 2/10g, 200Hz sampling rate
 - 3D ambient vibration – 10^{-4}g, 200Hz sampling rate,
 - Strain gages with three resistances
 - Temperature sensor
 - Humidity sensor
 - **Dual microprocessor**
 - Supervisory
 - Computational
 - **802.15.4 radio module – Zig-Bee compliant for wireless sensing**
 - **Local storage – mini SD card**
Sensing units

- Internal view
- Mounted unit

SM300 Sensing Unit
Wireless Communications Network

- Star, mesh and hybrid topologies for wireless communications networks

- Fundamental Building blocks
Damage Detection Algorithms

- **Main approach**
 - Use statistical pattern classification and signal processing methods
 - Use **single sensor** pre- and post- damage measurements
 - Computationally **efficient** - local micro-processing
 - **Independent** of the sensor – can be used with acceleration, strain, etc.
 - **Scalable** with increased sensor density
 - Reduces amount of transmitted data – **power saving**
NEES Multi-Scale Approach

- Single column tests – UNR and UC-Berkeley
- Development of rotation algorithm for wireless sensors (Allen Cheung, Stanford, 2008)
- Direct earthquake damage identification

![Graph showing displacement vs. magnitude of Rinaldi Ground Motion Test]

![Diagram of a cylindrical structure with dimensions and labels, such as 20.0" [508.0 mm], 98.5" [2501.9 mm], 1.00" pitch [25.44 mm], 22 #4 Grade 60 longitudinal bars, and 20.0" [508.0 mm] at the top.]
Layout of Test Bridge and Instrumentation
Decision Support System - Monitoring Mode
Test Schedule – 4-span Bridge Test at UNR

Complete test schedule for shake table tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Test Date</th>
<th>Motion Level</th>
<th>Test Type</th>
<th>Motion PGA (g)</th>
<th>Estimated D_{Ma} (in)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WN01</td>
<td>Feb 12, 2007</td>
<td>1</td>
<td>White Noise (Trans.)</td>
<td>-</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>WN02</td>
<td></td>
<td>1</td>
<td>White Noise (Long.)</td>
<td>-</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td></td>
<td>1</td>
<td>W/Restrainer1</td>
<td>-</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td></td>
<td>1</td>
<td>W/Restrainer2</td>
<td>-</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td></td>
<td>1</td>
<td>Longitudinal</td>
<td>-</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td></td>
<td>1</td>
<td>Biaxial</td>
<td>0.075</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>WN11</td>
<td>Feb 13, 2007</td>
<td>2</td>
<td>White Noise (Trans.)</td>
<td>0.18</td>
<td>0.70 1.00</td>
<td></td>
</tr>
<tr>
<td>WN12</td>
<td></td>
<td>2</td>
<td>White Noise (Long.)</td>
<td>0.18</td>
<td>0.70 1.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>Biaxial</td>
<td>0.18</td>
<td>0.70 1.00</td>
<td></td>
</tr>
<tr>
<td>WN21</td>
<td></td>
<td>3</td>
<td>White Noise (Trans.)</td>
<td>-</td>
<td>0.80 1.40</td>
<td></td>
</tr>
<tr>
<td>WN22</td>
<td></td>
<td>3</td>
<td>White Noise (Long.)</td>
<td>-</td>
<td>0.80 1.40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>Biaxial</td>
<td>0.75</td>
<td>0.80 1.60</td>
<td></td>
</tr>
<tr>
<td>WN31</td>
<td></td>
<td>3</td>
<td>White Noise (Trans.)</td>
<td>-</td>
<td>0.80 1.60</td>
<td></td>
</tr>
<tr>
<td>WN32</td>
<td></td>
<td>3</td>
<td>White Noise (Long.)</td>
<td>-</td>
<td>0.80 1.60</td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td></td>
<td>4</td>
<td>W/Restrainer1</td>
<td>-</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td></td>
<td>4</td>
<td>W/Restrainer2</td>
<td>-</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>4C</td>
<td></td>
<td>4</td>
<td>Longitudinal</td>
<td>-</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>4D</td>
<td></td>
<td>4</td>
<td>Biaxial</td>
<td>0.50</td>
<td>0.80 1.60</td>
<td></td>
</tr>
<tr>
<td>WN41</td>
<td></td>
<td>5</td>
<td>White Noise (Trans.)</td>
<td>-</td>
<td>1.60 2.65</td>
<td></td>
</tr>
<tr>
<td>WN42</td>
<td></td>
<td>5</td>
<td>White Noise (Long.)</td>
<td>-</td>
<td>1.60 2.65</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>Biaxial</td>
<td>0.75</td>
<td>1.60 2.65</td>
<td></td>
</tr>
<tr>
<td>WN51</td>
<td></td>
<td>6</td>
<td>White Noise (Trans.)</td>
<td>-</td>
<td>3.60 4.20</td>
<td></td>
</tr>
<tr>
<td>WN52</td>
<td></td>
<td>6</td>
<td>White Noise (Long.)</td>
<td>-</td>
<td>3.60 4.20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>Biaxial</td>
<td>1.20</td>
<td>3.60 4.20</td>
<td></td>
</tr>
<tr>
<td>WN61</td>
<td></td>
<td>7</td>
<td>White Noise (Trans.)</td>
<td>-</td>
<td>4.90 5.70</td>
<td></td>
</tr>
<tr>
<td>WN62</td>
<td></td>
<td>7</td>
<td>White Noise (Long.)</td>
<td>-</td>
<td>4.90 5.70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>Biaxial</td>
<td>1.55</td>
<td>4.90 5.70</td>
<td></td>
</tr>
</tbody>
</table>

Baseline Signals
- Major cracks at base of column & spalling
- Minor cracks at base of column
- Concrete spalling and exposure or rebar
- Rebar buckling/breaking; concrete pouring out of core
Final Test – White Noise

<table>
<thead>
<tr>
<th>Test</th>
<th>Damage Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reno - Setup Day DC1 and DC2</td>
<td>baseline</td>
</tr>
<tr>
<td>Mild Shaking Day 1, White Noise</td>
<td>21.05</td>
</tr>
<tr>
<td>Mild Shaking Day 2, White Noise 21</td>
<td>36.79</td>
</tr>
<tr>
<td>Mild Shaking Day 3, White Noise 41</td>
<td>56.97</td>
</tr>
<tr>
<td>Final Test Day, White Noise Run 51</td>
<td>59.80</td>
</tr>
<tr>
<td>Test</td>
<td>Damage Measure</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Reno - Setup Day DC1 and DC2</td>
<td>baseline</td>
</tr>
<tr>
<td>Mild Shaking Day 1, White Noise</td>
<td>21.05</td>
</tr>
<tr>
<td>Mild Shaking Day 2, White Noise</td>
<td>36.79</td>
</tr>
<tr>
<td>Mild Shaking Day 3, White Noise</td>
<td>56.97</td>
</tr>
<tr>
<td>Final Test Day, White Noise Run 51</td>
<td>59.80</td>
</tr>
</tbody>
</table>
NEES Multi-Scale Approach

- Scaled structural system tests – Stanford/SUNY Buffalo
- Development of fragility functions in terms of structural response parameters obtainable from real time measurements – wavelet based fragilities (Hae Young Noh and Dimitrios Lignos, Stanford, 2009)
Decision Support System

- Visual representation of the structure
- Visual representation locations of the wireless system
- Interface to wireless network
- System command and control center
- Display results of monitoring analyses
- Issue alerts
Decision Support System

- Provide support for decision making for follow-on actions
- Enable web services for
 - wide distribution of alerts and other information
 - remote access by operators and other users.
Outline

- Motivation
- Wireless Monitoring System Design
- Example application
- Current barriers
- Conclusion
Current Barriers

- Sensors for specific types of damage - e.g.
 - Corrosion
 - Crack
 - Displacement
- Scalable and robust wireless network system
 - Signal loss
 - Communication barriers
 - Sensor durability and continued operation
- Robust and reliable damage diagnosis and prognosis algorithms
- Reliability of long term power supply
Current Barriers (cont’d)

• Limited demonstrations
 • Laboratory
 • Field ***

• No standards or guidelines for development and manufacturing sensing units, sensor networks, etc.

• Existing legacy sensor companies unwilling to invest in new developments

• Unwillingness of profession to take the risk (or invest in proofs of concept)
Outline

• Motivation
• Wireless Monitoring System Design
• Example application
• Current barriers
• Conclusion
• Future directions
Conclusion

- Wireless monitoring systems – inevitable part of the future
- Significant applications throughout Asia, very limited elsewhere
- Must combine structural with other monitoring systems, e.g.
 - Building environmental/energy/lighting/security monitoring
 - Bridge, highway, tunnel, pipeline, transmission line, etc. management systems
- Key to success is providing information and not just data
Outline

- Motivation
- Wireless Monitoring System Design
- Example application
- Current barriers
- Conclusion
- Future directions
Future directions

- Instrument key structures and **demonstrate utility** of such systems
- Have a multi-scale approach – provide different systems – one system does not fit all applications
 - Just an alarm
 - Complete damage diagnosis and decision support for future actions
 - Systems that combine diagnosis, prognosis and repair actions
Future directions

- Develop the means for providing information to designers/builders at various stages of construction/use for future design purposes
- Systems should have different levels of interface sophistication
 - Technical user/decision maker
 - Management level decision maker with limited technical expertise
 - Common citizen